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• Preliminaries

• Why Partitions?

• A Combinatorial Touch

• Now About That Quasimodularity
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Definition

Let q = exp(2πiz). For k ≥ 1, the Eisenstein series E2k(z) is

E2k(z) = 1 +
(2π)2k

(−1)k(2k − 1)!ζ(2k)
Φ2k−1(q),

where

Φ`(q) =
∞∑
n=1

{∑
d|n

d`
}
qn

is a divisor sum generating function.

Recall, quasimodular forms are generated as products of the
E2k.
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Definition

Let Wk(Γ) be the space of all quasimodular forms of weight at
most 2k, which transform under Γ, a subgroup of SL2(Z) and
which have no constant term.

We are interested in spaces of the form

f(z)Wk(Γ) := {f(z)g(z) | g(z) ∈ Wk(Γ)}.
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Definition

A partition π is a non-increasing sequence of positive integers.
If the sum of these integers is n, then we write π ` n, or
|π| = n. Let p(n) denote the number of partitions of n.

The partitions π ` 4 are

(4) (3, 1)
(2, 2) (2, 1, 1)
(1, 1, 1, 1).

Thus, p(4) = 5.
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Take the generating function for partitions,

P (q) =

∞∑
n=0

p(n)qn.

Euler proved that

P (q) =

∞∏
i=1

1

1− qi
.

We will abbreviate these kinds of products using the
q-Pochhamer symbol

(a; q)n =

n−1∏
i=0

(1− aqi).

Thus P (q) = 1/(q; q)∞.
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Why then are partitions related to quasimodularity? Let
δq = q ∂∂q .

Then logarithmic differentiation shows that δqP may be written
in terms of the divisor sum fuctions Φ`, since

δq
1

1− qi
=

iqi

1− qi
=

∞∑
n=1

iqin.
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Crank Function

Definition

If a partition π does not contain any 1s, then the crank of π is
defined to be the largest part of π.
Otherwise, let w(π) denote the number of 1’s occurring in π,
and let µ(π) denote the number of parts of π which are larger
than w(π). In this case, the crank of π is defined to be

c(π) = µ(π)− w(π).

Payoff: The crank is an integer-valued function which
illuminates the structure of partitions.

Morrill, Simonič Quadimodularity of Residual Cranks



Take Mj(n) to be the jth moment of the crank,

Mj(n) =
∑
π`n

c(π)j .

Theorem (Dyson, 1989)

For n ≥ 0,
M2(n) = 2np(n).

That is, the M2(n) are the coefficients of 2δqP . The
combinatorial interpretation is that M2(n) counts the total size
of parts across all partitions of n.
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Theorem (Jennings-Shaffer, 2015)

The following crank functions are in (−q; q2)∞P (q2)Wk(Γ0(4)):

δmq C12j, for m ≥ 0, 1 ≤ j ≤ k, j +m ≤ k
δmq C22j, for m ≥ 0, 1 ≤ j ≤ k, j +m ≤ k
δmq C42j, for m ≥ 0, 1 ≤ j ≤ k, j +m ≤ k

We aim to bring these results to a more general setting.
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Overpartitions

Definition

A overpartition is a non-increasing sequence of positive integers,
where the first occurrence of each part may be overlined.

The overpartitions π ` 3 are

(3) (3) (1, 1, 1) (1, 1, 1)
(2, 1) (2, 1) (2, 1) (2, 1).

The generating function for overpartitions is

P (q) =

∞∑
n=0

p(n)qn =
(−q; q)∞
(q; q)∞

= (−q; q)∞P (q).
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Residual Cranks

Definition

For k ≥ 1, the kth residual partition of π is a partition π′

consisting of 1/kth of each of the non-overlined parts of π that
are divisible by k. The kth residual crank of π is then defined to
be ck(π) = c(π′).

For example,

c1((4, 3, 2)) = c((4, 2)) = 4

c2((4, 3, 2)) = c((2, 1)) = 0

c3((4, 3, 2)) = c(∅) = 0

c4((4, 3, 2)) = c((1)) = −1

c5((4, 3, 2)) = c(∅) = 0.
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Definition

Let novk(n) denote the sum of all non-overlined parts which
vanish modulo k, taken across all overpartitions π ` n.

We see that nov2(3) = 4

(3) (3) (1, 1, 1) (1, 1, 1)
(2, 1) (2, 1) (2, 1) (2, 1).

Theorem (M., Simonič, 2021)

Take M [k]`(n) to be the `th moment of the kth residual cranks.
For n ≥ 0 and k ≥ 1,

k ·M [k]2(n) = 2 · novk(n).
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Sketch.
The two variable generating function for the kth residual crank
is given by

C[k] :=

∞∑
n=0

∞∑
m=−∞

M(m,n)zmqn

=
(−q; q)∞
(q; q)∞

(qk, qk; qk)∞
(zqk, qk/z; qk)∞

.
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We can calculate the generating function for M [k]2 by using
δz = z ∂

∂z , since

δ2z

∞∑
n=0

∞∑
m=−∞

M(m,n)zmqn

=

∞∑
n=0

∞∑
m=−∞

m2M(m,n)zmqn.

Substituting z = 1 completes the calculation.
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For our series,

δ2z
(−q; q)∞
(q; q)∞

(qk, qk; qk)∞
(zqk, qk/z; qk)∞

= (−q; q)∞
(qk; qk)∞
(q; q)∞

δ2z
(qk; qk)∞

(zqk, qk/z; qk)∞

= (−q; q)∞
(qk; qk)∞
(q; q)∞

δ2zC(z; qk),

where C(z; q) is the two variable generating function for the
partition crank.
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The problem reduces to Andrews’ result for ordinary partitions.

∞∑
n=0

k ·M [k]2(n)qn = (−q; q)∞
(qk; qk)∞
(q; q)∞

∞∑
n=0

k ·M2(n)qkn

= (−q; q)∞
(qk; qk)∞
(q; q)∞

∞∑
n=0

2kn · p(n)qkn

= (−q; q)∞
(qk; qk)∞
(q; q)∞

∞∑
π′

2k|π′|qk|π′|

=

∞∑
n=0

2 · novk(n)qn.
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Theorem (Bringman, Lovejoy, Osburn; 2009)

The following crank functions are in PWk(Γ0(2)):

δmq C[1]2j, for m ≥ 0, 1 ≤ j ≤ k, j +m ≤ k

δmq C[2]2j, for m ≥ 0, 1 ≤ j ≤ k, j +m ≤ k
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Let C[k]j(q) denote the jth moment generating function for the
kth residual crank.

Theorem (M., Simonič, 2021)

For j, k ≥ 1 and m ≥ 0, the function

δmq C[k]2j(q)

is in the space (−q;q)∞
(q;q)∞

Wj+m(Γ0(lcm(2, k))).

That is, δmq C[k]2j(q) is P (q) times a quasimodular form.
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Thank you!
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